Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Peter G. Jones, ${ }^{\text {a* }}$ Henning Hopf ${ }^{\text {b }}$ and Jörg Hillmer ${ }^{\text {b }}$
${ }^{\mathrm{a}}$ Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany, and ${ }^{\mathbf{b}}$ Institut für Organische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany

Correspondence e-mail:
jones@xray36.anchem.nat.tu-bs.de

Key indicators

Single-crystal X-ray study
$T=178 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.134$
Data-to-parameter ratio $=16.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2002 International Union of Crystallography Printed in Great Britain - all rights reserved

4,13-Diacetyl-[2.2]paracyclophane

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$, displays crystallographic twofold symmetry. The bridgehead bond lengths are 1.584 (3) and 1.590 (3) \AA. . There is slight distortion at one bridgehead C atom [C2-C3-C4 124.71 (13) ${ }^{\circ}$ in standard cyclophane numbering]. The molecules are linked by a weak hydrogen bond of the form $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ to form a layer structure.

Comment

Among the chiral [2.2]paracyclophanes relatively little is known about the 4,13-disubstituted derivatives, otherwise known as 'pseudo-meta' compounds. If the two substituents are identical, the compounds may, in principle, display ideal C_{2} symmetry. Our interest in these compounds has led us to prepare the title compound, (I), by our established synthetic method (see Experimental); here we report its structure.

(I)

The molecule (Fig. 1) displays imposed twofold symmetry, with the twofold axis (at $x=0.5, z=0.25$) passing through the midpoints of $\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$ and $\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$ [symmetry code (i): $1-x, y$, $1 / 2-z]$; the atom numbering is standard for one half of a cyclophane molecule. The six-membered rings display the distortion towards a boat form that is typical of [2.2]paracyclophanes, whereby the bridgehead atoms C3 and C6 are displaced by 0.182 (2) and 0.174 (2) \AA, respectively, from the plane of the remaining four atoms (mean deviation $0.004 \AA$). Also typical is the lengthening of the bridge bonds to 1.584 (3) and 1.590 (3) \AA. The carbonyl group is rotated out of the corresponding ring plane, with a torsion angle $\mathrm{C} 3-\mathrm{C} 4-$ $\mathrm{C} 17-\mathrm{O}$ of $-32.2(2)^{\circ}$. The substituent is associated with some distortion at C 3 , with a $\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$ angle of $124.71(13)^{\circ}$.

The molecules are connected by a weak $\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O}$ hydrogen bond via a twofold screw axis (at $x=0.75, z=0.25$) to form layers parallel to the $a b$ plane (Fig. 2).

Received 7 February 2002 Accepted 12 February 2002 Online 22 February 2002

Figure 1
The molecule of the title compound in the crystal. Ellipsoids are drawn at the 50% probability level.

Experimental

The title compound was prepared by the standard method (Hopf et al., 1981) by cycloaddition of but-3-yn-2-one (ethynyl methyl ketone) to 1,2,4,5-hexatetraene (biallenyl) in toluene at 348 K . Apart from the title compound, which is formed in 8% yield, other isomers are produced. These were separated by preparative middle pressure chromatography on silica gel with dichloromethane (Hillmer, 1991). Crystals were grown by evaporation from 2-propanol.

Figure 2
Packing diagram of the title compound, with the view direction perpendicular to the $a b$ plane. The hydrogen bond is indicated by a dashed line; H atoms, other than those of the methyl group, have been excluded for clarity. There are two such layers, related by inversion symmetry, per c axis repeat. Radii are arbitrary.

Crystal data
$\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{O}_{2}$
$M_{r}=292.36$
Monoclinic, C2/c
$a=15.827$ (6) A
$b=9.442$ (2) \AA
$c=11.423$ (4) \AA
$\beta=119.34$ (2) ${ }^{\circ}$
$V=1488.1(8) \AA^{3}$
$Z=4$

Data collection

Nicolet $R 3$ diffractometer
ω scans
Absorption correction: none
3126 measured reflections
1710 independent reflections
1411 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.018$

$$
\begin{aligned}
& D_{x}=1.305 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo K } \alpha \text { radiation } \\
& \text { Cell parameters from } 50 \\
& \quad \text { reflections } \\
& \theta=10-12^{\circ} \\
& \mu=0.08 \mathrm{~mm}^{-1} \\
& T=178(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.70 \times 0.45 \times 0.40 \mathrm{~mm} \\
& \\
& \theta_{\max }=27.5^{\circ} \\
& h=-20 \rightarrow 0 \\
& k=-12 \rightarrow 8 \\
& l=-12 \rightarrow 14 \\
& 3 \text { standard reflections } \\
& \text { every } 147 \text { reflections } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.134$
$S=1.03$
1710 reflections
101 parameters
H -atom parameters constrained

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0677 P)^{2} \\
&+1.4684 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.27 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$1.584(3)$	$\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$	$1.590(3)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 2^{\mathrm{i}}$	$112.31(7)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$116.50(13)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 4$	$116.08(13)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 9$	$120.95(12)$
$\mathrm{C} 8-\mathrm{C} 3-\mathrm{C} 2$	$118.33(13)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 9$	$121.63(12)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$124.71(13)$	$\mathrm{C} 6-\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}$	$112.88(7)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 17-\mathrm{O}$	$-32.2(2)$	$\mathrm{C} 6-\mathrm{C} 9-\mathrm{C} 9^{\mathrm{i}}-\mathrm{C} 6^{\mathrm{i}}$	$-5.6(2)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C}^{\mathrm{i}}-\mathrm{C} 3^{\mathrm{i}}$	$14.1(3)$		

Symmetry code: (i) $1-x, y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 18-\mathrm{H} 18 A \cdots \mathrm{O}^{\mathrm{ii}}$	0.98	2.48	$3.288(2)$	139

Symmetry code: (ii) $\frac{3}{2}-x, \frac{1}{2}+y, \frac{1}{2}-z$.
H atoms on $s p^{2} \mathrm{C}$ atoms were included using a riding model, starting from idealized positions. Methyl H atoms were located as rather weak, but distinct, maxima in difference syntheses, idealized and refined as rigid groups allowed to rotate but not tip.

Data collection: P3 (Nicolet, 1987); cell refinement: P3; data reduction: XDISK (Nicolet, 1987); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP (Siemens, 1994); software used to prepare material for publication: SHELXL97.

Financial support from the Fonds der Chemischen Industrie is gratefully acknowledged. We thank Mr A. Weinkauf for technical assistance.

organic papers

References

Hillmer, J. (1991). PhD thesis, Technical University of Braunschweig, Germany.
Hopf, H., Böhm, I. \& Kleinschroth, M. (1981). Org. Synth. 60, 41-48.

Nicolet (1987). P3 and XDISK. Nicolet Instrument Corporation, Madison, Wisconsin, USA
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Siemens (1994). XP. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

